Dado que las propiedades eléctricas y térmicas del grafeno están influenciadas por la presencia de defectos topológicos en el material y que éstos condicionan así las futuras aplicaciones del grafeno como material base de componentes nanoelectrónicos, es necesario disponer de un modelo de comportamiento del grafeno que permita incluir dichos defectos. En este trabajo se ha obtenido un modelo de fuerzas interatómicas a partir del potencial AIREBO (Adaptive Intermolecular Reactive Empirical Bond-Order), desarrollado por Stuart et al. [1], que incluye interacciones atómicas hasta vecinos de orden cuarto. Se presentan, tanto expresiones explícitas de las derivadas del potencial, como los valores de las constantes de fuerza. Hemos verificado que el modelo de fuerzas cumple con las simetrías del cristal y las curvas de dispersión de fonones del correspondiente modelo dinámico presentan un buen acuerdo con las obtenidas por otros autores. Además, hemos verificado que las interacciones con vecinos terceros y cuartos no modifican, ni la estructura del campo de desplazamientos alrededor de los núcleos de dislcocación, ni sus correspondientes energías de formación que se predicen a partir de la teoría discreta de dislocaciones de Ariza y Ortiz [2]. Summary In view of the influence that topological defects have on the thermal and electrical properties of graphene, and given the pivotal role that such properties play in potential applications of graphene as a building block for nano-electronic components, models of graphene behavior that allow for the consideration of such defects are of the essence. In the present work, we have obtained an atomic force-constant model from the AIREBO potential (Adaptive Intermolecular Reactive Empirical Bond-Order), of Stuart et al. [1], that accounts for interatomic interactions up to fourth neighbors. We present explicit expressions of the potential derivatives as well as the force-constant values. We have verified that the force-constant model is invariant under the crystal symmetries and that the phonondispersion curves of the corresponding dynamic model are in good agreement with those obtained by other authors. In addition, we have verified that the thirdand fourth-neighbor interactions affect neither the displacement field in the vicinity of dislocation cores nor the corresponding formation energies predicted by the theory of discrete dislocations of Ariza and Ortiz [2].
Published on 25/05/17
Submitted on 25/05/17
Volume 33, Issue 1, 2017
Licence: CC BY-NC-SA license
Are you one of the authors of this document?