Resumen

En este trabajo se describe la formulación corrotacional de un elemento de viga que utiliza distintas teorías, Euler-Bernoulli, Timoshenko y Euler-Bernoulli incluyendo el acoplamiento entre los efectos de los esfuerzos de flexión y axil lo que genera coeficientes no lineales en la matriz de rigidez elástica de dicho elemento. La cinemática corrotacional se basa en la separación del movimiento de un sólido en una parte deformacional y otra en movimiento de cuerpo rígido. La parte deformacional del movimiento es representada por tres grados de libertad: una traslación debido al esfuerzo axil y por las rotaciones nodales debidas a la flexión del elemento. A nivel local se obtienen los esfuerzos internos mediante el princípio de los trabajos virtuales una vez definidas las funciones de interporlación que describen el movimiento deformacional para cada teoría de viga utilizada. Se describe de forma detallada la obtención de las matrices de rigideces elástica para los tres tipos de elementos de viga. A través de algunos ejemplos numéricos se muestra la habilidad del elemento para obtener el comportamiento no lineal de vigas, pórticos y arcos.

Palabras claves: Elemento de viga Euler-Bernoulli. Elemento de viga Timoshenko, Elemento de viga Euler-Bernoulli no lineal, Formulación corrotacional.

Abstract

The present work uses a co-rotating approach for obtain the internal forces and tangent stiffness matrices for three plane beam elements. All of them are based on the same co-rotational approach, and differ by the strain definition used in the local co-rotational coordinate system. Based on the Bernoulli assumption, the first two elements use a linear and a shallow arch strain definition, respectively. The third element is based on the Timoshenko assumption with linear interpolations for the displacements. Some examples are presented and the numerical results demonstrate that the beam elements here presented are able to perform the nonlinear analysis of plane frames and 2D arches and to handle large rotations too.

1 Introducción

En las últimas dos décadas se ha observado un creciente interés en la comunidad de mecánica computacional referente a la aplicación de la formulación corrotacional en el análisis no lineal de estructuras utilizadas en la industria aeronáutica, aeroespacial y petrolera. Felippa y Haugen [1] describen en detalle una reseña del desarrollo de la formulación corrotacional y de sus aplicaciones en mecánica computacional. La idea principal de la formulación corrotacional es descomponer el movimiento de un sólido en la suma de un movimiento de cuerpo rígido y un movimiento deformacional. Esta formulación es un caso particular de la cinemática Lagrangiana para modelar los efectos de la no linealidad geométrica en el análisis estructural, haciendo uso del método de los elementos finitos. En esta formulación se asume que tanto las traslaciones como las rotaciones de cuerpo rígido podrán ser grandes, pero las deformaciones han de ser pequeñas y por ello existe la posibilidad del uso de elementos finitos lineales en problemas que involucran no linealidad geométrica, siendo esta la principal motivación del uso de la formulación corrotacional. En el panorama actual se puede citar algunos trabajos que han aplicado la formulación corrotacional utilizando otros métodos de discretización, por ejemplo, en Yaw et al. [2] se muestran aplicaciones de la formulación corrotacional y los métodos sin malla en el análisis de sólidos 2D incluyendo no linealidad geométrica y física; Xu et al [3] aplican el método de elementos finitos extendidos para el tratamiento de problemas de localización y la formulación corrotacional en elementos de viga de Timoshenko en el análisis no lineal de estructuras reticulares. Aún en el contexto de la aplicación de la formulación corrotacional en la actualidad, en Bisegna y Caselli [4] se describe la formulación corrotacional de un elemento de lámina hiperelástico y su aplicación en el estudio de fibras de tejidos biológicos. Como ejemplo más reciente de aplicación de la formulación corrotacional en el análisis no lineal de estructuras se puede citar el trabajo de Li et al. [5] que describe la formulación corrotacional de um elemento triangular de lámina de 6 nodos y su aplicación en el análisis elastoplastico de cáscaras finas. En este trabajo se aplica la formulación corrotacional junto a diferentes teorías de vigas en el análisis no lineal geométrico de vigas, pórticos y arcos. Para ello, se utilizan las teorías clásicas de viga de Euler-Bernoulli y de Timoshenko. En el tercer elemento de viga se incluye en la teoría de Euler-Bernoulli el efecto del acoplamiento de los esfuerzos axil y de flexión, dicho acoplamiento genera coeficientes no lineales en la matriz de rigidez elástica del elemento, razón por la cual se le denonima elemento de viga de Euler- Bernoulli no lineal. La cinemática corrotacional aquí descrita sigue la formulación propuesta por Crisfield [6], esta formulación permite obtener la matriz de rigidez tangente en coordenadas globales independientemente del tipo de elemento de viga adoptado. El objetivo en este trabajo es comparar el desempeño de los tres tipos de elementos de viga 2D al retratar el comportamiento no lineal de vigas, pórticos planos y arcos.

2 Cinemática corrotacional

Movimiento del elemento de viga 2D.
Figura 1: Movimiento del elemento de viga 2D.

La Figura 1 muestra las variables cinemáticas utilizadas en la descripción corrotacional del elemento de viga 2D. Las coordenadas nodales del elemento en la configuración de referencia son y , respectivamente. En la configuración deformada dichas coordenadas se definem como y A cada elemento se le asigna el sistema de referencia local que lo acompaña durante su movimiento. El sistema de referencia local es utilizado para definir la parte deformacional del movimiento. El vector de desplazamientos globales es definido por

(1)

La parte deformacional del movimiento es dada por el vector de desplazamientos locales como

(2)

donde es el desplazamiento relativo entre los nodos 1 y 2 en la dirección del eje local . y son las rotaciones deformacionales de los nodos 1 y 2, respectivamente. Las componentes de son definidas de la siguiente manera

(3)

donde y denotan la longitud inicial y actual del elemento. Dichas longitudes son dadas por

(4)

con

(5)

y denota la rotación de cuerpo rígido que puede ser calculada como

(6)

donde es la inclinación del elemento en la configuración de referencia y la inclinación de la línea que une los nodos del elemento en la configuración actual. Estos ángulos pueden ser calculados con el uso de las siguientes expresiones

(7)

Usando la ecuación (7) se puede reescribir la ecuación (6) como

(8)

6.3 Arco circular biarticulado rebajado

Arco circular biarticulado rebajado. (a) Propiedades geométricas y mecánicas. (b) Desplazamiento vertical del vértice.
Figura 4: Arco circular biarticulado rebajado. (a) Propiedades geométricas y mecánicas. (b) Desplazamiento vertical del vértice.

En este ejemplo se considera un arco rebajado de directriz circular, ambos extremos apoyados y sometido a una carga uniformemente distribuida en la mitad de la luz del arco conforme se muestra en la Figura 4a. En dicha figura se detallan las propiedades geométricas y mecánicas del arco que fue discretizado con 20 elementos de viga EB, EBNL y TI, respectivamente. En la Figura 4b se muestran las curvas de la carga normalizada versus el desplazamiento vertical del vértice normalizado , para los tres modelos de elementos de viga. Se puede observar que no hay diferencias significativas entre las tres trayectorias de equilibrio, excepto en los valores próximos a los puntos limite PL2, PL3 y PL4, respectivamente. Los valores normalizados de la carga en los puntos limites PL1, PL2 y PL3 fueron comparados con los valores obtenidos por Xu y Mirmiran [11]. Estos autores utilizaran la formulación corrotacional y un elemento de viga que incluye los términos no lineales de la deformación axial de Green. Además, utilizaron una malla con 20 elementos. Los valores de estas cargas son detalladas en la Tabla 1. Para el elemento EB la mayor diferencia es de 3.1%, observada en el punto limite PL2. Para el elemento EBNL la mayor diferencia fue de 0.53% en el punto limite PL3. Se puede observar que para este elemento fueran encontradas las menores diferencias, esto debido a la inclusión del término definido en la ecuación (39), en la deformación infinitesimal del elemento. Para el elemento TI la mayor diferencia fue de 5.92% en el punto limite PL2. Por otra parte, las mayores diferencias fueron detectadas para este elemento pues utiliza funciones de interpolaciones lineales para evaluar la deformación axial.

Tabla 1. Valores de la carga en los puntos limites
PL1 PL2 PL3
Xu y Mirmiran 13.77 -20.09 33.99
EB 13.92 -20.71 34.86
diferencia (%) 1.09 3.09 2.56
EBNL 13.83 -20.25 34.17
diferencia (%) 0.44 0.8 0.53
TI 14.02 -21.28 35.62
diferencia (%) 1.82 5.92 4.8

Para obtener las trayectorias de equilibrio fue utilizado el método de control variable de los desplazamientos. El valor inicial de la longitud de arco fue de 0.1 para los tres tipos de elementos de viga. Para el elemento EB fue utilizado 177 pasos de carga con 12 cortes automáticos debido a la divergencia del proceso iterativo. El número medio de iteraciones fue de 4.18. Con el elemento EBNL fueron 173 pasos de carga, 10 cortes automáticos y un número medio de iteraciones de 4.20. Por último, para el elemento TI fueron 173 pasos de carga con 9 cortes automáticos y un número medio de iteraciones de 4.22. Se puede notar que las trayectorias de equilibrio del arco mostrado en la Figura 4b son fuertemente no lineales con la presencia de algunos limit points, turning points y un looping.

6.4 Arco semicircular biarticulado

En este ejemplo se considera un arco semicircular con ambos extremos apoyados, sometido a la acción de una carga excéntrica respecto al vértice del arco, como se muestra en la Figura 5a. En dicha figura se detallan las propiedades geométricas y mecánicas del arco que fue discretizado con 50 elementos de viga EB, EBNL y TI. En la Figura 5b se muestran las curvas carga versus el desplazamiento del vértice, obtenidas para los tres modelos de elementos de viga. Se puede observar que hay una buena concordancia entre las tres trayectorias de equilibrio, excepto en los valores próximos a los puntos limite PL6, PL7, PL8 y PL9, respectivamente. Sin embargo, las diferencias se acentuan en los puntos limite PL8 y PL9, debido probablemente, a que en estos tramos de equilibrio la elástica del arco presenta deformaciones medianas. Los valores de la carga en los nueve puntos limites fueron comparados con los valores presentados por Yang y Kuo [12]. Estos autores utilizaran la formulación Lagrageana Actualizada, un elemento de viga que incluye los términos no lineales de la deformación axial de Green y una malla con 26 elementos. Los valores de estas cargas se detallan en la Tabla 2. Para el elemento EB la mayor diferencia es de 3.82% observada en el punto limite LP9. Para el elemento EBNL la mayor diferencia fue de 1.76% en el punto limite PL8. Para el elemento TI la mayor diferencia ha sido de 6.88% en el punto limite PL9. Para los puntos PL1, PL2, PL3 y PL4 las diferencias no son significativas, sin embargo para los puntos PL6, PL7, PL8 y PL9 se han detectado las mayores diferencias.

Arco semicircular biarticulado. a) Propiedades geométricas y mecánicas. b) Desplazamiento vertical del vértice.
Figura 5: Arco semicircular biarticulado. (a) Propiedades geométricas y mecánicas. (b) Desplazamiento vertical del vértice.

Para obtener las trayectorias de equilibrio fue utilizado el método de control variable de los desplazamientos. El valor inicial de la longitud de arco fue de 2.2 para los tres tipos de elementos de viga. Para el elemento EB se ha utilizado 859 pasos de carga con 91 cortes automáticos debido a la divergencia del proceso iterativo. El número medio de iteraciones fue de 4.23. Con el elemento EBNL fueron 820 pasos de carga, 93 cortes automáticos y un número medio de iteraciones de 4.25. Por último, para el elemento TI fueron 859 pasos de carga con 89 cortes automáticos y un número medio de iteraciones de 4.22. Se puede notar que las trayectorias de equilibrio del arco mostrado en la Figura 5b son fuertemente no lineales con la presencia de varios limit points, turning points y loopings.


Tabla 2. Valores de la carga en los puntos limites - (lb)
PL1 PL2 PL3 PL4 PL5 PL6 PL7 PL8 PL9
Yang y Kuo 5.813 -8.498 16.149 -22.162 38.566 -49.896 64.875 -82.420 104.611
EB 5.811 -8.495 16.204 -22.086 38.932 -50.206 66.786 -83.138 108.61
diferencia (%) 0.03 0.04 0.34 0.34 0.95 0.62 2.95 0.87 3.82
EBNL 5.802 -8.464 16.108 -21.912 38.453 -49.394 65.274 -80.967 104.99
diferencia (%) 0.19 0.40 0.25 1.13 0.29 1.00 0.62 1.76 0.36
TI 5.816 -8.518 16.278 -22.24 39.328 -50.909 68.081 -85.055 111.81
diferencia (%) 0.05 0.24 0.80 0.35 1.98 2.03 4.94 3.20 6.88

7 Conclusiones

Los elementos de viga 2D de Euler-Bernoulli, de Euler-Bernoulli no lineal y de Timoshenko presentaron un excelente desempeño en el análisis no lineal de vigas, pórticos y arcos. Estos elementos obtuvieron trayectorias de equilibrio casi idénticas para las diferentes tipologías estructurales presentadas en este trabajo, cuando estas sufren deformaciones infinitesimales. Cuando la estructura analisada ha presentado en algunos estados de carga deformaciones medianas, los caminos de equilibrio difieren un poco. Asi que de manera general los resultados obtenidos con los tres modelos de vigas han tenido una buena coincidencia comparados con resultados de otros autores. En este trabajo se mostró, a través de los ejemplos numéricos, la habilidad de los tres modelos viga de tratar con grandes rotaciones de cuerpo rígido cuando se utiliza la formulación corrotacional. A través de operaciones algebraicas bastante simples se describió de manera explícita el movimiento de sólido rígido del elemento de viga y la obtención de la matriz de rigidez tangente expresada en coordenadas globales. La formulación corrotacional aquí descrita es independiente del modelo de elemento de viga 2D que será utilizado. Cabe destacar como principal ventaja de la formulación corrotacional el desacoplamiento entre los efectos locales y globales, esto permite utilizar una biblioteca de elementos finitos oriundos del análisis lineal. La extensión de estos al análisis no lineal geométrico se da al tener en cuenta los efectos globales debido al movimiento de sólido rígido. Por otro lado, diferentes no linealidades físicas pueden ser fácilmente incorporadas a la formulación corrotacional debido a que son efectos locales.

Referencias

[1] C.A. Felippa and B. Haugen, A unified formulation of small-strain corotational finite elements: I. Theory. Computer Methods in Applied Mechanics and Engineering, 81:131-150, (2005).

[2] L.L. Yaw, N. Sukumar and S.K. Kunnath, Meshfree co-rotational formulation for two-dimensional continua. International Journal for Numerical Methods in Engineering, 79(8):979–1003, (2009).

[3] Xu, J., C. K. Lee, C.K., Tan, K.H., A two-dimensional co-rotational Timoshenko beam element with XFEM formulation. Computational Mechanics, 49(5):667–683, (2012).

[4] Caselli, F. and Bisegna, P., A corotational flat triangular element for large strain analysis of thin shells with application to soft biological tissues. Computational Mechanics, 54(3):847–864, (2014).

[5] Li, Z.X., Xiang, Y., Izzuddin, B.A., Vu-Quoc, L., Zhuo, X., Zhang, C., A 6-node co-rotational triangular elasto-plastic shell element. Computational Mechanics, 55(5):837–859, (2015).

[6] Crisfield, M.A., Non-linear finite element analysis of solids and structures. Volume 1: Essentials, Wiley, (1991).

[7] S. Krenk, Non-linear modeling and analysis of solids and structures. Cambridge University Press, (2009).

[8] Timoshenko, S.P. y Gere, J.M., Theory of elastic stability. Second Edition, Dover, (2009).

[9] W.T. Matias, El control variable de los desplazamientos en el análisis no lineal elástico de estructuras de barras. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 18(4):549–572, (2002).

[10] F. Fujii, K.K. Choong and S.X. Gong, Variable displacement control to overcome turnning points of nonlinear elastic frames. Computers & Structures, 44(1/2):133-136, (1992).

[11] Xu, Z. and Mirmiran, A., Looping behavior of arches using corotational finite element. Computers & Structures, 62(6):1059-1071, (1997).

[12] Yang, Y.B. and Kuo, S.R., Theory & analysis of nonlinear framed strucutures. Prentice Hall, (1994).

Back to Top

Document information

Published on 01/01/2018

Licence: CC BY-NC-SA license

Document Score

0

Views 0
Recommendations 0

Share this document