Abstract

Achieving the maximum utilization of the existing infrastructure is an essential goal of traffic management for both freeways and the urban road network. Reliable and explicit information about the current traffic condition are required for using the road network efficiently. So far, the lack of a uniform classification scheme results in a time consuming process of coordination between different stakeholders developing and implementing control strategies and providing traffic information. In this study, a uniform concept is developed defining the traffic conditions on freeways and urban roads. This classification scheme is applicable for all stakeholders (e.g. road authorities, broadcasting services, private service providers) and can be used in both infrastructure-based and vehicle-based applications. In order to determine an appropriate traffic flow parameter for a comprehensible representation of the traffic condition, extensive data from freeways and urban roads in Germany were collected and analyzed. The empirical basis is provided by segment-based and local data obtained with different detection methods. As expected, the average speed per segment leads to a more precise description of the traffic condition than local speed values from stationary detectors. Test runs with probe vehicles were made using a GPS tracking device to record the floating cars driving speed. During the test runs, a subjective evaluation of the traffic flow quality was provided by different passengers (probands) in the vehicle. In total, over 15000 sets of travel speed data with associated grading of the experienced traffic flow quality were analyzed to develop a six-step classification scheme. Based on different approaches, threshold values of the average travel speed were determined depending on the type of road and the speed limit. This uniform classification scheme can offer valuable decision guidance for traffic management strategies. For providing more comprehensible traffic information for the road users, the developed scheme was transferred to a three-step system, easily illustrated by the colors green, yellow and red.

Keywords

traffic information ; traffic condition ; average travel speed

References

  1. Breitenstein et al., 1980 Breitenstein, J.; Keller, H.; Lenz, K.-H.; Zackor, H. (1980). Fahrzeugpulks und Verkehrsstau (Vehicle platoons and traffic congestion). Strassenverkehrstechnik , no. 1/1980.
  2. Brilon et al., 2005 Brilon, W.; Geistefeldt, J.; Regler, M. (2005). Reliability of Freeway Traffic Flow: A Stochastic Concept of Capacity. In Proceedings of the 16th International Symposium on Transportation and Traffic Theory , College Park, Maryland.
  3. Brilon and Schnabel, 2003 Brilon, W.; Schnabel, W. (2003). Bewertung der Qualitaet des Verkehrsablaufs auf Haupt-verkehrsstrassen (Evaluation of traffic flow quality on main urban roads). Strassenverkehrstechnik, no. 1/2003.
  4. Brilon and Estel, 2009 Brilon, W.; Estel, A. (2009). Differentiated Analysis of Level of Service F Within the German Highway Capacity Manual. In Transportation Research Record: Journal of the Transportation Research Board, No. 2173. Transportation Research Board, National Research Council, Washington D.C., 2009.
  5. Busch et al., 2004 Busch, F.; Glas, F.; Bergmann, E. (2004). Dispositionssysteme als FCD-Quellen für eine verbesserte Verkehrslagerekonstruktion in Staedten (Disposition systems as a source for FCD for an improved reconstruction of the current traffic situation on urban roads). Strassen-verkehrstechnik , no. 9/2004.
  6. FGSV, 2015 FGSV (2015). Handbuch fuer die Bemessung von Strassenverkehrsanlagen (HBS) (German Highway Capacity Manual). Forschungsgesellschaft fuer Strassen-und Verkehrswesen, Cologne.
  7. Greenshields, 1934 B.D. Greenshields; A study of traffic capacity; Proceedings Highway Research Board (1934), p. 14
  8. Kerner, 2000 Kerner, B.S. (2000). Theory of Breakdown Phenomenon at Highway Bottlenecks . Paper presented at the 79th Transportation Research Board Annual Meeting, Washington D.C.
  9. Kerner and Rehborn, 1996 Kerner, B.S.; Rehborn, H. (1996). Experimental Properties of Complexity in Traffic Flow. Physical Review E , Vol. 53, pp. R4275-R4278.
  10. Kerner and Rehborn, 1998 Kerner, B.S.; Rehborn, H. (1998). Messungen des Verkehrsflusses: Charakteristische Eigenschaften von Staus auf Autobahnen (Measurements of traffic flow: Characteristics of traffic congestion on freeways). Internationales Verkehrswesen , no. 5/1998.
  11. Kim and Keller, 2001 Kim, Y.; Keller, H. (2001). Zur Dynamik zwischen Verkehrszustaenden im Fundamentaldiagramm (Dynamics between traffic conditions in the fundamental diagram). Strassenverkehrstechnik , no. 9/2001.
  12. Regler, 2004 Regler, M. (2004). Verkehrsablauf und Kapazitaet auf Autobahnen (Traffic flow and capacity on freeways) . Institute for Traffic Engineering, Ruhr-University Bochum, series no. 28, Bochum.
  13. Schnabel et al., 1998 Schnabel, W.; Ringel, R.; Laetzsch, H.L.; Knote, T. (1998). Die Qualitaet des Verkehrsab-laufs auf staedtischen Hauptverkehrsstrassen (Traffic flow quality on main urban roads). Strassenverkehrstechnik , no. 12/1998.
  14. Schnabel and Lohse, 1997 Schnabel, W.; Lohse, D. (1997). Grundlagen der Strassenverkehrstechnik und der Verkehrsplanung (Fundamentals of traffic engineering and traffic planning). Beuth Publishing, Berlin.
  15. Spangler, 2009 Spangler, M. (2009). Reisezeitbasierte Verfahren fuer die Verkehrszustandsanalyse von staedtischen Hauptverkehrsstrassen (Travel time-based approaches for traffic condition analyses on main urban roads). Institute for Traffic Engineering, series no. 11, TU Munich.
  16. TRB, 2010 TRB (2010). Highway Capacity Manual (HCM) . Transportation Research Board, National Research Council, Washington D.C.
  17. Treiber and Kesting, 2010 Treiber, M.; Kesting, A. (2010). Datengestuetzte Analyse der Stauentstehung und-aus-breitung auf Autobahnen (Data-based analysis of congestion formation and expansion on freeways). Strassenverkehrstechnik , no. 1/2010.
  18. Van Aerde, 1995 Van Aerde, M. (1995). A Single Regime Speed-Flow-Density Relationship for Freeways and Arterials. Proceedings of the 74th TRB Annual Meeting . Transportation Research Board, Washington D.C.
  19. Zhang, 1999 Zhang, H.M. (1999). A mathematical Theory of Traffic Hysteresis. Transportation Research Part B 33 .
Back to Top

Document information

Published on 05/04/17

Licence: Other

Document Score

0

Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?