Abstract

A set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D}

of vertices of a graph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
is called a dominating set   of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
if every vertex in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle V(G)-D}
is adjacent to a vertex in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D}

. A dominating set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

such that the subgraph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \left\langle S\right\rangle }
induced by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
has at least one isolated vertex is called an isolate dominating set. An isolate dominating set none of whose proper subset is an isolate dominating set is a minimal isolate dominating set. The minimum and maximum cardinality of a minimal isolate dominating set are called the isolate domination number  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0}
and the upper isolate domination number  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0}
respectively. In this paper we initiate a study on these parameters.

2010 Mathematics Subject Classification

059C

Keywords

Dominating set; Isolate dominating set; Isolate domination number; Upper isolate domination number

1. Introduction

By a graph, we mean a finite, undirected graph with neither loops nor multiple edges. For graph theoretic terminology we refer to the book by Chartrand and Lesniak  [2]. All graphs in this paper are assumed to be non-trivial.

In a graph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G=(V,E)} , the degree   of a vertex Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle v}

is defined to be the number of edges incident with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle v}
and is denoted by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle degv}

. The minimum of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \lbrace degv:v\in V(G)\rbrace }

is denoted by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \delta (G)}
and the maximum of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \lbrace degv:v\in V(G)\rbrace }
is denoted by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Delta (G)}

. The open neighbourhood   of a vertex Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle v\in V(G)}

is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle N(v)=\lbrace u\in V(G):uv\in E(G)\rbrace }
and the closed neighbourhood   is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle N[v]=N(v)\cup \lbrace v\rbrace }

. The subgraph induced by a set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

of vertices of a graph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
is denoted by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \left\langle S\right\rangle }
with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle V(\left\langle S\right\rangle )=S}
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle E(\left\langle S\right\rangle )=\lbrace uv\in E(G):u,v\in S\rbrace }

. For a set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

of vertices, a vertex Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle v}
is said to be a private neighbour   of a vertex Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u\in S}
with respect to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle N[v]\cap S=\lbrace u\rbrace }

. Furthermore, we define the private neighbour set   of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u} , with respect to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S} , to be Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle pn[u,S]=\lbrace v:N[v]\cap S=\lbrace u\rbrace \rbrace } . Notice that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u\in pn[u,S]}

if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u}
is an isolate in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \left\langle S\right\rangle }

, in which case we say that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u}

is its own private neighbour. A vertex cover   in a graph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
is a set of vertices that covers all the edges of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

. The minimum number of vertices in a vertex cover of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

is called the vertex covering number   and is denoted by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \alpha _0(G)}

. If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle H}
are disjoint graphs, then the join   of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle H}
denoted by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G+H}
is the graph such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle V(G+H)=V(G)\cup V(H)}
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle E(G+H)=E(G)\cup E(H)\cup \lbrace uv:u\in V(G),v\in V(H)\rbrace }

. A wheel   on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n}

vertices (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n\geq 4}

), denoted by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle W_n} , is the graph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle K_1+C_{n-1}} . The vertex corresponding to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle K_1}

is called the centre vertex   of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle W_n}

. The corona   of two disjoint graphs Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G_1}

and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G_2}
is defined to be the graph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G=G_1\circ G_2}
formed from one copy of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G_1}
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \vert V(G_1)\vert }
copies of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G_2}
where the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle i}

th vertex of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G_1}

is adjacent to every vertex in the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle i}

th copy of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G_2} .

The study of domination and related subset problems is one of the fastest growing areas in graph theory. For a detailed survey of domination one can see  [5] and [6] and  [7]. A set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D}

of vertices of a graph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
is said to be a dominating set   if every vertex in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle V-D}
is adjacent to a vertex in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D}

. A dominating set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D}

is said to be a minimal dominating set   if no proper subset of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D}
is a dominating set. The minimum cardinality of a dominating set of a graph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
is called the domination number   of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
and is denoted by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma (G)}

. The upper domination number  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma (G)}

is the maximum cardinality of a minimal dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

. The minimum cardinality of an independent dominating set is called the independent domination number  , denoted by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle i(G)}

and the independence number  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \beta _0(G)}
is the maximum cardinality of an independent set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

. A set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

of vertices is irredundant   if every vertex Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle v\in S}
has at least one private neighbour with respect to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

. The minimum and maximum cardinalities of a maximal irredundant set are respectively called the irredundance number  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle ir(G)}

and the upper irredundance number  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle IR(G)}

. An inequality chain connecting these parameters was established in  [3] as given below.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): ir(G)\leq \gamma (G)\leq i(G)\leq \beta _0(G)\leq \Gamma (G)\leq IR(G)\mbox{.}
(1)

A detailed survey of results about this domination chain can be seen in  [6] wherein it has been suggested that extending this chain by means of parameters whose values lie between any two consecutive parameters in the chain is one direction of research. This paper introduces such a domination parameter namely isolate domination number and upper isolate domination number which are defined as follows.

A dominating set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

of a graph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
is said to be an isolate dominating set   of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \left\langle S\right\rangle }
has at least one isolated vertex. An isolate dominating set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
is said to be a minimal isolate dominating set   if no proper subset of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
is an isolate dominating set. The minimum and maximum cardinality of a minimal isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
are called the isolate domination number  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)}
and the upper isolate domination number  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(G)}
respectively. An isolate dominating set of cardinality Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0}
is called a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0}

-set. Similarly, the sets Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma } -set, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma } -set and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0} -set are defined. Obviously, every independent dominating set in a graph is an isolate dominating set so that every graph possess an isolate dominating set as every graph has an independent dominating set. Hence the property being isolate domination is fundamental.

This paper initiates a study on these parameters isolate domination number Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _o}

and the upper isolate domination number Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0}

. More specifically, the exact values of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0}

and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0}
for some common classes of graphs such as paths, cycles, wheels and complete multipartite graphs are determined in Section  2. As an important result it is proved in Section  3 that the parameters Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0}
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0}
got fit into the domination chain 1 and consequently an extended domination chain has been established. Further, some bounds for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0}
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0}
have been discussed in terms of order, size, degree and covering number. Moreover, the parameter Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _o}
for cubic graphs is proved to be Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma }
or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma +1}
and those cubic graphs for which Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0=\gamma +1}
are also obtained. Finally, we conclude the paper with some open problems along with some directions for further research.

The following theorems are required in the subsequent sections.

Theorem 1.1 [6].

A dominating set  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D} is a minimal dominating set if and only if for each vertex  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u} in  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D} , one of the following conditions holds.

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u}

is an isolate of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \left\langle D\right\rangle } .

  • There exists a vertex  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle v}

in  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle V-D} , for which  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle N(v)\cap D=\lbrace u\rbrace } .

Theorem 1.2 [4].

For any graph G of order  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n} ,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma (G)+\delta (G)\leq n} .

Theorem 1.3 [6].

If  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} is a graph with no isolated vertices, then the complement  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle V-S} of every minimal dominating set  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S} is a dominating set.

2. Exact values

In this section, we determine the value of isolate domination number and the upper isolate domination number for some standard graphs such as paths, cycles, complete multipartite graphs and wheels.

Proposition 2.1.

  • For the paths  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle P_n}

and the cycles  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle C_n} , we have  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(P_n)=\gamma _0(C_n)=\lceil \frac{n}{3}\rceil } ,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(P_n)=\lceil \frac{n}{2}\rceil } and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(C_n)=\lfloor \frac{n}{2}\rfloor } .

  • For a complete k-partite graph  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G=K_{m_1,m_2,\ldots ,m_k}}

,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=Min\lbrace m_1,m_2,\ldots ,m_k\rbrace } and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(G)=Max\lbrace m_1,m_2,\ldots ,m_k\rbrace } . In particular,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(K_n)=\Gamma _0(K_n)=1} .

  • For the wheel  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle W_n}

on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n} vertices,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(W_n)=1} and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(W_n)=\lfloor \frac{n-1}{2}\rfloor } .

  • If  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

is a graph of order  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n} , then  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G^+)=\Gamma _0(G^+)=n} , where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G^+} is the graph obtained from  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} by attaching exactly one edge at every vertex of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} .

Proof.

  • Obviously Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(P_4)=2}
and when Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n\not =4}

, any Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma } -set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle P_n}

is an isolate dominating set as well, so that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(P_n)\leq \gamma (P_n)}

. Of course, the other inequality is immediate so that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(P_n)=\gamma (P_n)}

and so Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(P_n)=\lceil \frac{n}{3}\rceil }
as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma (P_n)=\lceil \frac{n}{3}\rceil }

. Now, if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle P_n=(v_1,v_2,v_3,\ldots ,v_n)}

then the set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S=\lbrace v_{2i-1}/1\leq i\leq \lceil \frac{n}{2}\rceil \rbrace }
is a minimal isolate dominating set so that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _o(P_n)\geq \lceil \frac{n}{2}\rceil }

. Further, as any set with more than Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \lceil \frac{n}{2}\rceil }

vertices of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle P_n}
can no longer be a minimal isolate dominating set, we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(P_n)=\lceil \frac{n}{2}\rceil }

. In a similar way one can prove that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(C_n)=\lceil \frac{n}{3}\rceil }

and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(C_n)=\lfloor \frac{n}{2}\rfloor }

.

  • It is quite obvious that the k-parts of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
are the only minimal isolate dominating sets of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
so that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=Min\lbrace m_1,m_2,\ldots ,m_k\rbrace }
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(G)=Max\lbrace m_1,m_2,\ldots ,m_k\rbrace }

. In particular Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(K_n)=\Gamma _0(K_n)} = 1.

  • The centre vertex of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle W_n}
dominates all other vertices and therefore Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(W_n)=1}

. Also, an isolate dominating set containing the centre vertex never contains any other vertex of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle W_n}

as it ceases the formation of isolates. Therefore a minimal isolate dominating set of the wheel with maximum cardinality must avoid the centre vertex and consequently it would be a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0}

-set of the subgraph induced by the remaining vertices, which is obviously a cycle on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n-1}

vertices. Hence the result follows from (i).
  • Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
be any minimal isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G^+}

. Then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

must contain each pendant vertex or its neighbour so that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
contains at least Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n}
vertices. Further, if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \vert S\vert >n}

, then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

must contain a pendant vertex together with its support and so Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S-\lbrace v\rbrace }

, where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle v}

is the support, is an isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G^+}

, a contradiction to the minimality of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S} . Hence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \vert S\vert =n} . □

The following proposition determines the values of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)}

and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(G)}
for a disconnected graph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

.

Proposition 2.2.

If  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} is a disconnected graph with components  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G_1} ,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G_2} , …,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G_r} , then

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=min_{1\leq i\leq r}\lbrace t_i\rbrace }

, where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle t_i=\gamma _0(G_i)+\sum _{j=1,j\not =i}^r} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma (G_j)} .

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(G)=max_{1\leq i\leq r}\lbrace s_i\rbrace }

, where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle s_i=\Gamma _0(G_i)+\sum _{j=1,j\not =i}^r} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma (G_j)} .

Proof.

  • Assume that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle t_1=min\lbrace t_1,t_2,t_3,\ldots ,t_r\rbrace }

. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

be a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0}

-set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G_1}

and let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D_i}
be a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma }

-set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G_i}

for all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle i\geq 2}

. Then the set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S\cup (\bigcup _{i=2}^rD_i)}

is an isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
so that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)\leq \gamma _0(G_1)+\sum _{j=2}^r\gamma (G_j)=t_1=min_{1\leq i\leq r}\lbrace t_i\rbrace }

. Now, let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

be a minimal isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

. Then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

must intersect the vertex set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle V(G_i)}
of each component Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G_i}
and so Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S\cap V(G_i)}
is a minimal dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G_i}

, for all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle i=1}

to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle r}

. Further, at least one of the sets of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S\cap V(G_i)} , say Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S\cap V(G_j)} , must be an isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G_j} . Therefore Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \vert S\vert \geq \gamma _0(G_j)+\sum _{i=1,i\not =j}^r\gamma (G_i)=t_j\geq min_{1\leq i\leq r}\lbrace t_i\rbrace }

and hence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=min_{1\leq i\leq r}\lbrace t_i\rbrace }

.

  • For every value of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle i}

, a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0} -set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G_i}

together with the set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \bigcup _{j=1,j\not =i}^rD_j}

, where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D_j}

is a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma }

-set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G_j} , forms a minimal isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} . Therefore Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(G)\geq max_{1\leq i\leq r}\lbrace \Gamma _0(G_i)+\sum _{j=1,j\not =i}^r\Gamma (G_j)\rbrace } . Now, let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

be any minimal isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

. Then the set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S\cap V(G_i)}

is a minimal dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G_i}
for every value of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle i}
and in particular Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S\cap V(G_i)}
must be a minimal isolate dominating set for at least one value of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle i}

, say Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle j} . Then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \vert S\vert \leq \Gamma _0(G_j)+\sum _{i=1,i\not =j}^r\Gamma (G_i)=s_j\leq max_{1\leq i\leq r}\lbrace s_i\rbrace } . □

3. Extended domination chain

Here we prove that the isolate domination parameters Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0}

and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0}
extend the existing domination chain (1) as shown below.

Proposition 3.1.

For any graph  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} , we have  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle ir(G)\leq \gamma (G)\leq \gamma _0(G)\leq i(G)\leq \beta _0(G)\leq \Gamma _0(G)\leq \Gamma (G)\leq IR(G)} .

Thus the new variation of domination namely the isolate domination is interesting as it is fundamental in the sense that it is defined for all graphs and extends the existing dominating chain (1). Let us now proceed to establish the above extended domination chain given in Proposition 3.1.

To start with, let us recall the terms minimality and 1-minimality of a set with respect to a graph theoretic property. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle P}

be an arbitrary property of a set of vertices in a graph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

. If a set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

has property Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle P}

, then we say that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

is a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle P}

-Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle set} . A Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle P} -set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

is a 1-minimal     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle P}

-set if for any vertex Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u\in V-S} , the set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S\cup \lbrace u\rbrace }

is not a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle P}

-set while it is a minimal     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle P} -set if no proper subset of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

is a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle P}

-set. Clearly, minimal Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle P} -sets are 1-minimal Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle P} -sets but not the converse; and the converse holds when the property Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle P}

is super hereditary. Certainly, the property that isolate domination is neither hereditary nor super-hereditary. But still, for this property as well, the minimality and 1-minimality are equivalent as shown below.

Proposition 3.2.

Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S} be any isolate dominating set of a graph  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} . Then  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S} is minimal if and only if  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S} is  1-minimal.

Proof.

Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

be a 1-minimal isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

. Suppose there exists a proper subset Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S^{{'}}}

of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
that is also an isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

. Then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S^{{'}}}

will contain all the isolates of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \left\langle S\right\rangle }

. That is, what remains in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S-S^{{'}}}

are non-isolates of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \left\langle S\right\rangle }

. Choose one of those vertices of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S-S^{{'}}} , say Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle v} . Then the set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S-\lbrace v\rbrace }

is an isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

, which is a contradiction to the 1-minimality of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S} . Converse is obvious. □

Theorem 3.3.

An isolate dominating set  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S} of a graph  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} is minimal if and only if every vertex in  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S} has a private neighbour with respect to  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S} .

Proof.

Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

be a minimal isolate dominating set and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u}
be a vertex of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

. If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u}

is an isolate in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \left\langle S\right\rangle }
then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u}
is a private neighbour of itself. Suppose Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u}
is not an isolate of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \left\langle S\right\rangle }

. If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u}

has no private neighbour with respect to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
then the set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S-\lbrace u\rbrace }
will be an isolate dominating set. This contradicts the minimality of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
and therefore Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u}
must have a private neighbour with respect to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

.

Conversely, suppose Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

is an isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
and every vertex of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
has a private neighbour with respect to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

. We now show that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

is a minimal isolate dominating set. If not, then by Proposition 3.2, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
cannot be a 1-minimal dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
and so there is a vertex Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u}
in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S-\lbrace u\rbrace }
is an isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

. Therefore, every vertex in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle V-(S-\lbrace u\rbrace )}

must have at least one neighbour in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S-\lbrace u\rbrace }
and consequently the vertex Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u}
can have no private neighbours with respect Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

. This contradicts our assumption and hence the result follows. □

Corollary 3.4.

If  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S\subseteq V(G)} is an isolate dominating set of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} which is minimal with respect to isolate domination, then  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S} is a minimal dominating set of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} .

Proof.

Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

be a minimal isolate dominating set. Then by Theorem 3.3, every vertex of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
has a private neighbour with respect to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
and consequently Theorem 1.1 implies that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
is a minimal dominating set. □

Corollary 3.5.

For any graph  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} , we have  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma (G)\leq \gamma _0(G)\leq \Gamma _0(G)\leq \Gamma (G)} .

Proposition 3.6.

Every maximal independent set is a minimal isolate dominating set.

Proof.

Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

be a maximal independent set. Then every vertex in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle V-S}
is adjacent to at least one vertex of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

. Therefore Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

is a dominating set. As Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
is an independent set it is actually an isolate dominating set and also every vertex of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
has a private neighbour with respect to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
namely itself and so the result follows from Theorem 3.3. □

Corollary 3.7.

For any graph  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} ,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)\leq i(G)\leq \beta _0(G)\leq \Gamma _0(G)} .

Corollary 3.5 and Corollary 3.7 together establish the required extended domination chain mentioned in Proposition 3.1.

Let us now consider the corona Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle H=K_3\circ mK_1} . It is straight forward to verify that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma (H)=3} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(H)=m+2}

and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle i(H)=2m+1}

. This gives the following proposition.

Proposition 3.8.

For every positive integer  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle r} there exists a graph  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} such that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle i(G)-\gamma _0(G)>r} and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)-\gamma (G)>r} .

Proposition 3.8 says that the differences Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle i-\gamma _0}

and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0-\gamma }
are arbitrary. In fact, the parameters Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma ,\gamma _0}
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle i}
can assume arbitrary values as shown in the following theorem. Further, one can observe that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle i(G)=\gamma _0(G)}
when Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)\leq 2}
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=1}
if and only if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma (G)=1}

.

Theorem 3.9.

Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle a} and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle b} be two positive integers with  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle a\leq b} . Then there exist graphs  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle H} such that

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=a}

and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle i(G)=b} , if  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle a\geq 3} .

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma (H)=a}

and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(H)=b} , if  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle a\geq 2} .

Proof.

(i) Consider the path Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle P=(u_1,u_2,\ldots ,u_{3a-3})}

on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle 3a-3}
vertices and attach Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle b-a+1}
pendant vertices at each of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u_1}
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u_2}

. Now, let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

be the resultant graph. Certainly, the set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \lbrace u_1,u_2\rbrace \cup \lbrace u_{5+3i}/i\in \lbrace 0,1,2,3,\ldots ,a-3\rbrace \rbrace }
is an isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
with cardinality Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle a}
and so Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)\leq a}

. Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G-(N[u_1]\cup N[u_2])}

is a path, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma (G-(N[u_1]\cup N[u_2]))=\lceil \frac{3a-6}{3}\rceil =a-2}

. Also at least two vertices are required to dominate the set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle N[u_1]\cup N[u_2]}

and so Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)\geq a}

. Hence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=a} . Now, the set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \lbrace u_2\rbrace \cup \lbrace u_{5+3i}/i\in \lbrace 0,1,2,3,\ldots ,a-3\rbrace \rbrace }

together with the pendant vertices adjacent to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u_1}
is an independent dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
with cardinality Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle b}
and therefore Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle i(G)\leq b}

. Further, if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle I}

is an independent dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

, then both Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u_1}

and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u_2}
cannot be in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle I}
simultaneously. If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u_1\in I}

, then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle I}

must contain all the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle b-a+1}
pendant vertices adjacent to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u_2}
and similar argument follows when Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle I}
contains Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u_2}

. Also as discussed above a dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G-(N[u_1]\cup N[u_2])}

requires at least Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle a-2}
vertices and hence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle i(G)\geq 1+b-a+1+a-2=b}

. Thus Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle i(G)=b} .

(ii) Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle H}

be the graph consisting of a path on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle a}
vertices and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle b-a+1}
pendant edges attached with each vertex of the path. Now it can be easily verified that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(H)=b}
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma (H)=a}

. □

4. Bounds

In this section we obtain some bounds for the isolate domination number Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0} . Obviously the value of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0}

for a graph of order Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n}
ranges from 1 to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n}

. The earlier is attained only for graphs with maximum degree Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n-1}

and the later is attained only for graphs with no edges. Further, it has been proved in  [1] that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=n-1}
if and only if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G=P_2}

. The following proposition characterizes the connected graphs Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

of order Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n}
for which Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=n-2}

.

Proposition 4.1.

Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} be a connected graph of order  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n} . Then  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=n-2} if and only if  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} is one of the graphs  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle P_3} ,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle P_4} ,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle C_3} and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle C_4} .

Proof.

Suppose Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=n-2}

and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
is a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0}

-set. Then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \left\langle V-S\right\rangle =K_2}

or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \overline{K_2}}

. It is enough to prove that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n\leq 4} . By Theorem 1.3, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle V-S}

is a dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

. Now, if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \left\langle V-S\right\rangle =\overline{K_2}} , then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle V-S}

will be an isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
and hence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n\leq 4}

. Suppose Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \left\langle V-S\right\rangle =K_2} . If a vertex Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u}

in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle V-S}
has more than one neighbour in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

, then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle (S-N(u))\cup \lbrace u\rbrace }

will be an isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
with cardinality less than Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n-2}

, giving a contradiction. Therefore each of the two vertices in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle V-S}

has at most one neighbour in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

, which implies that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \vert S\vert \leq 2}

and consequently we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n\leq 4}

. Converse is obvious. □

In view of Theorem 1.3, the value of the domination number Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma (G)}

of a graph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
will not exceed half of the order of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

. But unlike dominating sets, the complement of a minimal isolate dominating set need not be an isolate dominating set. For instance, in a double star the set of all pendant vertices is a minimal isolate dominating set whereas its complement is not an isolate dominating set. However, the isolate domination number Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0}

does not exceed Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \frac{n}{2}}

, where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n}

is the order of the given graph. This is proved in the following theorem.

Theorem 4.2.

If  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} is a connected graph on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n} vertices, then  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)\leq \frac{n}{2}} . Further, if  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle a} and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle b} are positive integers with  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle b\geq 2a} then there exists a graph  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle b} vertices such that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=a} .

Proof.

Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D}

be a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma }

-set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} . If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \left\langle D\right\rangle }

has an isolate then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D}
itself is a minimal isolate dominating set and so we are through. Suppose Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \left\langle D\right\rangle }
has no isolates. Then it follows from Theorem 1.1 that every vertex in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D}
has a private neighbour in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle V-D}
with respect to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D}

. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u}

be a vertex in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D}
having minimum number of private neighbours, say Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle k}

, with respect to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D}

and therefore Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma +\gamma k\leq n}

. Also, it is clear that the set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle X=(D-\lbrace u\rbrace )\cup S} , where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

is a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0}

-set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \left\langle pn[u,D]\right\rangle } , is an isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

so that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)\leq \vert X\vert \leq \gamma -1+k}

. We now claim that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma -1+k\leq \frac{\gamma +\gamma k}{2}} . Obviously, this inequality is true when Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma =2} . Now if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle 2(\gamma -1+k)>\gamma +\gamma k} , where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma \not =2} , then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle (\gamma -2)>k(\gamma -2)}

and thus getting a contradiction, as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle k>1}

. Hence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)\leq \vert X\vert \leq \gamma -1+k\leq \frac{\gamma +\gamma k}{2}\leq \frac{n}{2}} .

Now, suppose Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle a}

and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle b}
are any two positive integers with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle b\geq 2a}

. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle H}

be any connected graph on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle a}
vertices. Then, for the graph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
obtained by attaching Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle b-2a+1}
pendant vertices at exactly one vertex of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle H}
and attaching exactly one pendant vertex at each of the remaining vertices, we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=a}
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \vert V(G)\vert =b}

. □

Remark 4.3.

It is quite obvious that for any vertex Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle v}

of a graph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
the set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S=V(G)-N(v)}
is an isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

. As this is true in particular for a vertex of maximum degree, it follows that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)\leq n-\Delta (G)} . Clearly, this bound is attained for all graphs with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Delta (G)=n-1}

and also for the complete bipartite graphs.

The reader may be quite familiar with the result that for a graph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

of diameter two, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma (G)\leq \delta (G)}

. But it is not true in the case of isolate domination number. For example, the graph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

of Fig. 1 is of diameter two whereas Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=3}
that exceeds Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \delta (G)}

.


A graph G of diameter two with γ0(G)>δ(G).


Fig. 1.

A graph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

of diameter two with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)>\delta (G)}

.

Proposition 4.4.

If  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} is a triangle free graph without isolated vertices, then  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(\overline{G})=2} .

Proof.

As Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

has no isolated vertices, there exists at least one edge Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle xy}
in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

. As Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

is triangle-free, no vertex in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
is adjacent to both Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle x}
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle y}
and therefore the set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \lbrace x,y\rbrace }
will form an isolate dominating set in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \overline{G}}
and so Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(\overline{G})\leq 2}

. If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(\overline{G})=1} , then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

has an isolated vertex, a contradiction to the assumption that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
has no isolated vertices. □

Proposition 4.5.

For any graph  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n} vertices,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)+\alpha _0(G)\leq n} , where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \alpha _0(G)} is the vertex covering number of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} . This bound is sharp.

Proof.

Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

be a vertex cover of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \vert S\vert =\alpha _0(G)}

. If a vertex Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u\in S}

is not dominated by any vertex of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle V-S}

, then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S-\lbrace u\rbrace }

will be a vertex cover of cardinality less than Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \alpha _0}
and therefore Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle V-S}
is a dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

. Further, as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

is a vertex cover of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle V-S}

is an independent set. Thus, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle V-S}
is an isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
and hence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)\leq \vert V-S\vert =n-\alpha _0(G)}

.

This bound is attained for the graph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

of Fig. 2 as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=2}

, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \alpha _0(G)=3}

and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n=5}

. □

Next we obtain a bound along with the characterization for the upper isolate domination number Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0} . It is obvious that for any graph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle 1\leq \Gamma _0(G)\leq n}

and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(G)=n}
if and only if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
is a graph with no edges. Further, as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \beta _0(G)\leq \Gamma _0(G)}

, it follows that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(G)=1}

if and only if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle K_n}

. Moreover, as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(G)\leq \Gamma (G)} , it follows from Theorem 1.2 that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(G)\leq n-\delta } . The following theorem characterizes the graphs whose upper isolate domination number is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n-\delta } .

Theorem 4.6.

For any graph  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} of order  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n} , the following are equivalent.

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma (G)=n-\delta (G)}

.

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(G)=n-\delta (G)}

.

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G=\overline{K_{n-\delta (G)}}+H}

, where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle H} is any graph of order  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \delta (G)} .

Proof.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle (i)\Leftrightarrow (ii)}


Assume that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma (G)=n-\delta (G)}

and let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
be a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma }

-set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} . As Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

is a minimal dominating set, by Theorem 1.1, every vertex of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
must have at least one private neighbour with respect to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

. Consider a vertex Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u\in S}

and a minimal isolate dominating set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S_1}
of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \left\langle pn[u,S]\right\rangle }

. Clearly, the set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D=(S-\lbrace u\rbrace )\cup S_1}

is an isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

. Also, every vertex of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D}

has a private neighbour with respect to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D}

. Therefore Theorem 3.3 implies that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D}

is a minimal isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
so that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(G)\geq \vert D\vert =\vert S\vert -1+\vert S_1\vert \geq n-\delta (G)}
as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \vert S\vert =n-\delta (G)}
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \vert S_1\vert \geq 1}

. As Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(G)\leq \Gamma (G)}

it follows that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(G)\leq n-\delta (G)}

. Thus Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(G)=n-\delta (G)} . Conversely, if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(G)=n-\delta (G)} , then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n-\delta \leq \Gamma (G)}

as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(G)\leq \Gamma (G)}
and therefore it follows from Theorem 1.2 that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma (G)=n-\delta (G)}

.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle (ii)\Leftrightarrow (iii)}


Assume that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(G)=n-\delta (G)}

and let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
be a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0}

-set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

of cardinality Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle n-\delta }
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u}
be an isolated vertex in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \left\langle S\right\rangle }

. Then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u}

is adjacent to all the vertices of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle V-S}

. Hence no vertex of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle V-S}

can be a private neighbour of any vertex of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
other than the vertex Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u}

. Hence Theorem 3.3 implies that every vertex of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S-\lbrace u\rbrace }

is a private neighbour of itself so that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
is an independent set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
and consequently every vertex of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
is adjacent to all the vertices of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle V-S}

. Then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G=\overline{K_{n-\delta (G)}}+H} , where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle H}

is a graph of order Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \delta (G)}

.

Conversely, suppose Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G=\overline{K_{n-\delta (G)}}+H} , where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle H}

is a graph of order Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \delta (G)}

. Then the set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle V(\overline{K_{n-\delta (G)}})}

is a minimal isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
so that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(G)\geq n-\delta (G)}

. The other inequality follows immediately from Theorem 1.2 and the extended domination chain given in Proposition 3.1. □

5. Cubic graphs

Here we discuss the isolate domination parameters for cubic graphs.

Proposition 5.1.

If  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} is an  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle r} -regular graph with  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle r\geq 2} , then  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)\leq \gamma (G)+r-2} and the bound is sharp.

Proof.

Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

be a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma }

-set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} . If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \left\langle S\right\rangle }

has an isolate then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=\gamma (G)}
and therefore Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)\leq \gamma (G)+r-2}
as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle r\geq 2}

. Now, let us assume that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \left\langle S\right\rangle }

has no isolates and let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u}
be a vertex of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

. Then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle u}

must have at least one neighbour in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}
and so it can have at most Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle r-1}
private neighbours with respect to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle S}

. Now the set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle (S-\lbrace u\rbrace )}

together with a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0}

-set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \left\langle pn[u,S]\right\rangle }

will form an isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
and therefore Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)\leq \vert (S-\lbrace u\rbrace )\cup pn[u,S]\vert \leq \gamma +r-2}

. The bound is attained for the complete bipartite graph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle K_{r,r}} . □

Corollary 5.2.

For a cubic graph  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} , the value of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)} is either  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma (G)} or  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma (G)+1} .

By virtue of Corollary 5.2, the family of all cubic graphs can be split into two classes, namely Class 1 and Class 2 such that cubic graphs for which Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0=\gamma }

are of Class 1 and the rest are of Class 2. As the value of the parameters Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0}
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma }
are equal to 3 for the Petersen graph, the Class 1 family is non-empty and indeed Class 2 also is non-empty as it includes the complete bipartite graph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle K_{3,3}}

.

Lemma 5.3.

Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} be a  3-regular graph. If  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=\gamma (G)+1} , then for every vertex  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle v} in a  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma } -set  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D} of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} ,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle pn[v,D]} is an independent set of cardinality  2.

Proof.

Assume that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=\gamma (G)+1} . Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D}

be a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma }

-set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

and let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle v}
be a vertex in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D}

. Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)>\gamma (G)} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle v}

is not an isolated vertex of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \left\langle D\right\rangle }

. Therefore, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle pn[v,D]}

is a subset of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle V(G)-D}
with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \vert pn[v,D]\vert \in \lbrace 1,2\rbrace }

. Now, if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \vert pn[v,D]\vert =1} , then the set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D-\lbrace v\rbrace }

together with the only private neighbour of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle v}
will form an isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
with cardinality Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma (G)}
which is a contradiction. Therefore Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \vert pn[v,D]\vert =2}

. Further, if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle v_1,v_2\in pn[v,D]}

and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle v_1v_2\in E(G)}
then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle (D-\lbrace v\rbrace )\cup \lbrace v_1\rbrace }
is an isolate dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
of cardinality Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma (G)}

. Hence, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle pn[v,D]}

is an independent set of cardinality two. □

Lemma 5.4.

Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} be a  3-regular graph. Then  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=\gamma (G)+1} if and only if  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \left\langle D\right\rangle =\cup K_2} , for every  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma } -set  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D} of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G} .

Proof.

Assume that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=\gamma (G)+1} . Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D}

be a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma }

-set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

and let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle v\in D}

. Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)>\gamma (G)} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle v}

is not an isolated vertex of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \left\langle D\right\rangle }

. By Theorem 1.1, the vertex Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle v}

has a private neighbour in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle V-D}

. Therefore Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle v}

can have at most two neighbours in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D}

. If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle v}

has two neighbours in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D}
then the set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D-\lbrace v\rbrace }
together with the only private neighbour of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle v}
will form a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0}

-set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

of cardinality Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma (G)}

. Hence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle v}

has exactly one neighbour in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D}

.

Conversely, let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \left\langle D\right\rangle =\cup K_2} , for every minimum dominating set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle D}

of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

. Now, we have to prove that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=\gamma (G)+1} . In contrary, if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=\gamma (G)}

then the corresponding Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0}

-set is a minimum dominating set of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}

having an isolated vertex. This contradicts our assumption. □

6. Open problems

This paper introduces a new variation of domination namely isolate domination and just initiates a study on this notion. We list some interesting problems for further research that we encountered during the course of our investigation.

  • Find a characterization of graphs Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
for which Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle (i)}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma (G)=\gamma _0(G)} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle (ii)} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=\frac{n}{2}}

and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle (iii)}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=i(G)} .

  • Find a structural characterization of cubic graphs Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle G}
for which Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)=\gamma (G)+1}

.

  • Obtain good bounds for both Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \gamma _0(G)}
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://test.scipedia.com:8081/localhost/v1/":): {\textstyle \Gamma _0(G)}

.

  • Study of these parameters for trees would be interesting.

Acknowledgment

Research of the first author is supported by DST-SERB Project SR/FTP/MS-002/2012.

References

  1. [1] Benjier H. Arriola; Isolate domination in the join and corona of graphs; Appl. Math. Sci., 9 (2015), pp. 1543–1549
  2. [2] G. Chartrand, Lesniak; Graphs and Digraphs; (fourth ed.)CRC press, Boca Raton (2005)
  3. [3] E.J. Cockayne, S.T. Hedetniemi, K.J. Miller; Properties of hereditary hypergraphs and middle graphs; Canad. Math. Bull., 21 (1978), pp. 461–468
  4. [4] G.S. Domke, Jean E. Dunbar, Lisa R. Markus; Gallai-type theorems and domination parameters; Discrete Math. (1997), pp. 237–248
  5. [5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater; Domination in Graphs: Advanced Topics; Marcel Dekker, New York (1998)
  6. [6] T.W. Haynes, S.T. Hedetniemi, P.J. Slater; Fundamentals of domination in Graphs; Marcel Dekker, New York (1998)
  7. [7] S.T. Hedetneimi, R. Laskar (Eds.), Discrete Math., 86 (1990)
Back to Top

Document information

Published on 07/10/16

Licence: Other

Document Score

0

Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?